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Abstract

Many scientific, engineering and economic problems involve the optimisation of a set

of parameters. These problems include examples like minimising the losses in a power

grid by finding the optimal configuration of the components, or training a neural net-

work to recognise images of people’s faces. Numerous optimisation algorithms have

been proposed to solve these problems, with varying degrees of success. The Particle

Swarm Optimiser (PSO) is a relatively new technique that has been empirically shown

to perform well on many of these optimisation problems. This thesis presents a theo-

retical model that can be used to describe the long-term behaviour of the algorithm.

An enhanced version of the Particle Swarm Optimiser is constructed and shown to have

guaranteed convergence on local minima. This algorithm is extended further, resulting

in an algorithm with guaranteed convergence on global minima. A model for construct-

ing cooperative PSO algorithms is developed, resulting in the introduction of two new

PSO-based algorithms. Empirical results are presented to support the theoretical proper-

ties predicted by the various models, using synthetic benchmark functions to investigate

specific properties. The various PSO-based algorithms are then applied to the task of

training neural networks, corroborating the results obtained on the synthetic benchmark

functions.
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Chapter 1

Introduction

You awaken to the sound of your alarm clock. A clock that was manufactured

by a company that tried to maximise its profit by looking for the optimal

allocation of the resources under its control. You turn on the kettle to make

some coffee, without thinking about the great lengths that the power company

went to in order to optimise the delivery of your electricity. Thousands of

variables in the power network were configured to minimise the losses in the

network in an attempt to maximise the profit of your electricity provider. You

climb into your car and start the engine without appreciating the complexity

of this small miracle of engineering. Thousands of parameters were fine-

tuned by the manufacturer to deliver a vehicle that would live up to your

expectations, ranging from the aesthetic appeal of the bodywork to the specially

shaped side-mirror cowls, designed to minimise drag. As you hit the gridlock

traffic, you think “Couldn’t the city planners have optimised the road layout

so that I could get to work in under an hour?”

Optimisation forms an important part of our day-to-day life. Many scientific, social,

economic and engineering problems have parameters that can be adjusted to produce a

more desirable outcome.

Over the years numerous techniques have been developed to solve such optimisation

problems. This thesis investigates the behaviour of a relatively new technique known

as Particle Swarm Optimisation, a technique that solves problems by simulating swarm
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1.1 Motivation

It is clear that there will always be a need for better optimisation algorithms, since

the complexity of the problems that we attempt to solve is ever increasing. The Particle

Swarm Optimiser was introduced in 1995 [38, 70], yet very few formal analyses of the be-

haviour of the algorithm have been published. Most of the published work was concerned

with empirical results obtained by changing some aspect of the original algorithm.

Without a formal model of why the algorithm works, it was impossible to determine

what the behaviour of the algorithm would be in the general case. If the algorithm has

been shown to be able to solve 10 difficult optimisation problems, what could be said

about the infinite number of problems that have not yet been studied empirically?

While the results obtained from empirical comparisons provided useful insights into

the nature of the PSO algorithm, it was clear that a general, theoretical description of

the behaviour of the algorithm was needed. This thesis constructs such a model, which

is subsequently used to analyse the convergence behaviour of the PSO algorithm.

Several new PSO-based algorithms were subsequently developed, with the aid of the

theoretical model of the PSO algorithm. These algorithms were constructed to address

specific weaknesses of the PSO algorithm that only became apparent once the theoretical

convergence behaviour of the PSO was understood.

1.2 Objectives

The primary objectives of this thesis can be summarised as follows:

• To develop a theoretical model for the convergence behaviour of the Particle Swarm

Optimisation algorithm, and the various derived algorithms introduced in this

thesis.

• To extend the PSO algorithm so that it becomes a global optimisation technique

with guaranteed convergence on global optima.
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• To develop and test cooperative Particle Swarm Optimisation algorithms, based

on models that have proven to be successful when applied to other evolutionary

algorithms.

• To obtain empirical results to support the predictions offered by the theoretical

models.

• To investigate the application of various PSO-based algorithms to the task of train-

ing summation and product unit neural networks.

1.3 Methodology

The theoretical models developed in this thesis are used to characterise the behaviour

of all the newly introduced algorithms. Each new algorithm is theoretically analysed to

show whether it is guaranteed to converge on either a local or global minimum, depending

on whether the algorithm is a local or global search algorithm, respectively.

Empirical results were obtained using various synthetic benchmark functions with

well-known characteristics. These results are used as supporting evidence for the the-

oretical convergence characteristics of the various algorithms. Owing to the stochastic

nature of all these algorithms, it is not always possible to directly observe the character-

istics predicted by the theoretical model, i.e. a stochastic global optimisation algorithm

may require an infinite number of iterations to guarantee that it will find the global min-

imiser. Therefore the probability of observing this algorithm locate a global minimiser

in a finite number of iterations is very small. Despite this problem, it is still possible

to see whether the algorithm is still making progress toward its goal, or whether it has

become trapped in a local minimum.

The results of two Genetic Algorithm-based optimisation techniques are also reported

for the same synthetic benchmark functions. These results provide some idea of the

relative performance of the PSO-based techniques when compared to other stochastic,

population-based algorithms.

A second set of experiments were performed on a real-world problem to act as a

control for the results obtained on the synthetic functions. The task of training both
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summation and product unit neural networks was selected as an example of a real-world

optimisation problem. On these problems the results of the PSO-based algorithms were

compared to that of the GA-based algorithms, as well as that of two efficient gradient-

based algorithms.

1.4 Contributions

The main contributions of this thesis are:

• A theoretical analysis of the behaviour of the PSO under different parameter set-

tings. This analysis led to the development of a model that can be used to predict

the long-term behaviour of a specific set of parameters, so that these parameters

can be classified as leading to convergent or divergent particle trajectories.

• The discovery that the original PSO algorithm is not guaranteed to converge on

a local (or global) minimiser. An extension to the existing PSO algorithm is pre-

sented that enables the development of a formal proof of guaranteed local conver-

gence.

• The development of a technique for extending the PSO algorithm so that it is

guaranteed to be able to locate the global minimiser of the objective function,

together with a formal proof of this property.

• The application of existing cooperative models to the PSO algorithm, leading to

two new PSO-based algorithms. These new algorithms offer a significant improve-

ment in performance on multi-modal functions. The existing cooperation model is

then extended to produce a new type of cooperative algorithm that does not suffer

from the same weaknesses as the original model.

1.5 Thesis Outline

Chapter 2 starts with an introduction to the theory of optimisation, followed by a brief

review of existing evolutionary techniques for solving optimisation problems. This is
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followed by a description of the Particle Swarm Optimiser, including a discussion of the

numerous published modifications to the PSO algorithm. The focus then shifts slightly

to the topic of coevolutionary algorithms, since these methods form the basis of the work

presented in Chapter 4.

Chapter 3 presents a theoretical analysis of the behaviour of the PSO algorithm,

including formal proofs of convergence for the various new PSO-based algorithms intro-

duced there.

Several cooperative PSO algorithms, based on the models discussed in Chapter 2, are

introduced in Chapter 4. The convergence properties of these cooperative algorithms are

investigated, with formal proofs where applicable.

Chapter 5 presents an empirical analysis of the behaviour of the various PSO-based

algorithms introduced in Chapters 3 and 4, applied to minimisation tasks involving

synthetic benchmark functions. These synthetic functions allow specific aspects of PSO

behaviour to be tested.

In Chapter 6, the same PSO-based algorithms are used to train summation and

product unit networks. These results are presented to show that the new algorithms

introduced in this thesis have similar performance on both real-world and synthetic

minimisation tasks.

Chapter 7 presents a summary of the findings of this thesis. Some topics for future

research are also discussed.

The appendices present, in order, a glossary of terms, a definition of frequently used

symbols, a derivation of the closed-form PSO equations, a set of 3D-plots of the synthetic

benchmark functions used in Chapter 5, a description of the gradient-based algorithms

used in Chapter 6 and a list of publications derived from the work presented in this

thesis.

                    



Chapter 2

Background & Literature Study

This chapter reviews some of the basic definitions related to optimisation. A brief discussion

of Evolutionary Algorithms and Genetic Algorithms is presented. The origins of the Particle

Swarm optimiser are then discussed, followed by an overview of the various published modifi-

cations to the basic PSO algorithm. Next an introduction to coevolutionary and cooperative

algorithms is presented, followed by a brief overview of the important issues that arise when

cooperative algorithms are implemented.

2.1 Optimisation

The task of optimisation is that of determining the values of a set of parameters so

that some measure of optimality is satisfied, subject to certain constraints. This task

is of great importance to many professions, for example, physicists, chemists and engi-

neers are interested in design optimisation when designing a chemical plant to maximise

production, subject to certain constraints, e.g. cost and pollution. Scientists require

optimisation techniques when performing non-linear curve or model fitting. Economists

and operation researchers have to consider the optimal allocation of resources in indus-

trial and social settings. Some of these problems involve only linear models, resulting in

linear optimisation problems, for which an efficient technique known as linear program-

ming [58] exists. The other problems are known as non-linear optimisation problems,

which are generally very difficult to solve. These problems are the focus of the work
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presented in this thesis.

The term optimisation refers to both minimisation and maximisation tasks. A task

involving the maximisation of the function f is equivalent to the task of minimising −f ,

therefore the terms minimisation, maximisation and optimisation are used interchange-

ably.

This thesis deals mostly with unconstrained minimisation tasks, formally defined as

Given f : Rn → R

find x∗ ∈ Rn for which f(x∗) ≤ f(x), ∀x ∈ Rn (2.1)

Some problems require that some of the parameters satisfy certain constraints, e.g. all the

parameters must be non-negative. These types of problems are known as constrained

minimisation tasks. They are typically harder to solve than their equivalent uncon-

strained versions, and are not dealt with explicitly here.

Another class of optimisation problems are known as least-squares problems, which

are of the form

Given r : Rn → Rm, n < m

find x∗ ∈ Rn for which
m∑

i=1

(ri(x))2 is minimised. (2.2)

These optimisation problems present themselves when there are more non-linear require-

ments than there are degrees of freedom. Note that the least-squared problem can be

solved using the same approach as used in solving (2.1), by defining

f(x) =
m∑

i=1

(ri(x))2

and minimising f . Neural Network training is sometimes solved as such a non-linear

least-squares problem (see Chapter 6 for more details).

Techniques used to solve the minimisation problems defined above can be placed into

two categories: Local and Global optimisation algorithms.

2.1.1 Local Optimisation

A local minimiser , x∗B, of the region B, is defined so that

f(x∗B) ≤ f(x), ∀x ∈ B (2.3)
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where B ⊂ S ⊆ Rn, and S denotes the search space. Note that S = Rn when dealing

with unconstrained problems. More importantly, note that B is a proper subset of S. A

given search space S can contain multiple regions Bi such that Bi ∩Bj = ∅ when i 6= j.

It then follows that x∗Bi
6= x∗Bj

, so that the minimiser of each region Bi is unique. Any of

the x∗Bi
can be considered a minimiser of B, although they are merely local minimisers.

There is no restriction on the value that the function can assume in the minimiser, so

that f(x∗Bi
) = f(x∗Bj

) is allowed. The value f(x∗Bi
) will be called the local minimum.

Most optimisation algorithms require a starting point z0 ∈ S. A local optimisation

algorithm should guarantee that it will be able to find the minimiser x∗B of the set B if

z0 ∈ B. Some algorithms satisfy a slightly weaker constraint, namely that they guarantee

to find a minimiser x∗Bi
of some set Bi, not necessarily the one closest to z0.

Many local optimisation algorithms have been proposed. A distinction will be made

between deterministic, analytical algorithms and the stochastic algorithms discussed

in Sections 2.2–2.4. The deterministic local optimisation1 algorithms include simple

Newton-Raphson algorithms, through Steepest Descent [11] and its many variants, in-

cluding the Scaled Conjugate Gradient algorithm (SCG) [87] and the quasi-Newton

[11, 30] family of algorithms. Some of the better known algorithms include Fletcher-

Reeves (FR), Polar-Ribiere (PR), Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [104, 11]. There’s even an algorithm that was designed specif-

ically for solving least-squares problems, known as the Levenberg-Marquardt (LM) al-

gorithm [11].

2.1.2 Global Optimisation

The global minimiser, x∗, is defined so that

f(x∗) ≤ f(x), ∀x ∈ S (2.4)

where S is the search space. For unconstrained problems it is common to choose S = Rn,

where n is the dimension of x. Throughout this thesis the term global optimisation will

refer strictly to the process of finding x∗ as defined in (2.4). The term global minimum will

refer to the value f(x∗), and x∗ will be called the global minimiser . A global optimisation

1see Section 2.1.2 for an explanation as to why these algorithms are classified as local methods here.
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Figure 2.1: The function f(x) = x4− 12x3 +47x2− 60x, indicating the global minimiser

x∗, as well as a local minimiser x∗B.
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algorithm, like the local optimisation algorithms described above, also starts by choosing

an initial starting position z0 ∈ S.

Contrary to the definition above in (2.4), some texts (e.g. [30]) define a global optimi-

sation algorithm differently, namely an algorithm that is able to find a (local) minimiser

of B ⊂ S, regardless of the actual position of z0. These algorithms consist of two pro-

cesses: “global” steps and “local” steps. Their local steps are usually the application of

a local minimisation algorithm, and their “global” steps are designed to ensure that the

algorithm will move into a region Bi, from where the “local” step will be able to find the

minimiser of Bi. These methods will be referred to as globally convergent algorithms,

meaning that they are able to converge to a local minimiser regardless of their starting

position z0. These methods are also capable of finding the global minimiser, given that

the starting position z0 is chosen correctly. There is no known reliable, general way of

doing this, though.

Figure 2.1 illustrates the difference between the local minimiser x∗B and the global

minimiser x∗. A true global optimisation algorithm will find x∗ regardless of the choice

of starting position z0. Dixon and Szegø have edited two collections of papers on the

topic of true global optimisation algorithms [31, 32]. The topic of global optimisation

algorithms will be revisited in Chapter 3.

2.1.3 No Free Lunch Theorem

One of the more interesting developments in optimisation theory was the publication of

the “No Free Lunch” (NFL) theorem by Wolpert and Macready [144, 145]. This theorem

states that the performance of all optimisation (search) algorithms, amortised over the

set of all possible functions, is equivalent.

The implications of this theorem are far reaching, since it implies that no algorithm

can be designed so that it will be superior to a linear enumeration of the search space,

or even a purely random search. The theorem is only defined over finite search spaces,

however, and it is as yet not clear whether the result applies to infinite search spaces. All

computer implementations of search algorithms will effectively operate on finite search

spaces, though, so the theorem is directly applicable to all existing algorithms.

Although the NFL theorem states that all algorithms perform equally well over the

                    



CHAPTER 2. BACKGROUND 11

set of all functions, it does not necessarily hold for all subsets of this set. The set of all

functions over a finite domain includes the set of all the permutations of this domain.

Many of these functions do not have compact descriptions, so that they appear to be

largely “random”. Most real-world functions, however, have some structure, and usually

have compact descriptions. These types of functions form a rather small subset of the

set of all functions. This concern lead to the development of sharpened versions of the

NFL [117], showing that it holds for much smaller subsets than initially believed.

A more constructive approach is to try and characterise the set of functions over

which the NFL does not hold. Christensen et al.proposed a definition of a “searchable”

function [18], as well as a general algorithm that provably performs better than random

search on this set of searchable functions.

This thesis will side with the latter approach, assuming that it is possible to design

algorithms that perform, on average, better than others (e.g. random search) over a

limited subset of the set of all functions. No further attempt will be made to characterise

this subset. Instead, empirical results will be used to show that real-world applications

can benefit from improved algorithms.
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